

The Case for Growth: Innovation and Diffusion Policies

Mannheim Public Finance Conference May 5th, 2022

John Van Reenen

LSE and MIT

The Argument

- OECD countries face unprecedented growth challenge due to Pandemic & Ukraine crisis.
- But even going into these crises, there was global problem of low productivity growth since (at least) Financial Crisis
- Policy framework should be unashamedly around equitable and environmentally sustainable growth
- Innovation and Diffusion of better technologies and management practices are key
- We know much about *what* to do, join up in a new Marshall Growth Plan
 - <u>Short-run:</u> Balance between **protection** and **reallocation**
 - Long Run: Frame around Climate Mission

OUTLINE OF TALK

Background: The Challenge

Innovation Policy

Diffusion Policy: Management

Misallocation

Growth Plan 2.0

The Big Hit I: GDP growth in <u>Advanced Economies</u>, 1980-2022

The Big Hit II: GDP growth in Germany, 1980-2022

Productivity problems started long before COVID: Total Factor Productivity (TFP) growth 1950-2019: US, Euro-area and UK

Source: Teichgraber & Van Reenen (2022) Updated data from Bergeaud, Cette, and Lecat (2016). Data publicly available at: <u>http://www.longtermproductivity.com/</u> *Notes:* Average annual TFP growth in the US (panel A), Euro-area (panel B), and UK (panel C). Insufficient data for whole EU, so we use Euro-area, represented by Germany, France, Italy, Spain, Netherlands, and Finland.

Drivers of Aggregate Productivity

- Pushing out the technological frontier
 - Important for advanced countries like Germany, but not the only thing...
- Catching Up to frontier
 - **Diffusion** of technology
 - Reducing Misallocation

Ideas Getting Harder to Find? R&D productivity decline means we need more investment to maintain good growth rate (not less)

Figure 4: Data on Moore's Law

Note: The effective number of researchers is measured by deflating the nominal semiconductor R&D expenditures of key firms by the average wage of high-skilled workers. The R&D data includes research by Intel, Fairchild, National Semiconductor, Texas Instruments, Motorola, and more than two dozen other semiconductor firms and equipment manufacturers; see Table 1 for more details.

Source: Bloom, Jones, Van Reenen and Webb (2020, AER)

OUTLINE OF TALK

Background: The Challenge

Innovation Policy

Diffusion Policy: Management

Misallocation

Growth Plan 2.0

Why should the government subsidize innovation?

- Multiple market failures:
 - Knowledge spillovers most important
 - Frictions in other markets (e.g. finance and SMEs)
- Empirical evidence suggests strong role for knowledge spillovers:
 - Bloom, Shankerman & Van Reenen (2013); Lucking, Bloom and Van Reenen (2020); Jones & Summers (2022)
 - Social return to R&D is ~3-4 times as large as the private return. Implies large under-investment

Innovation Policy: The "Lightbulb" Table

(1)	(2)	(3)	(4)	(5)	(6)	
Policy	Quality of	Conclusivenes	Benefit - Cost	Time frame:	Effect	on
	evidence	s of evidence			inequality	

Source: Bloom, Van Reenen and Williams (2019, JEP)

Innovation Policy: The "Lightbulb" Table

(1)	(2)	(3)	(4)	(5)	(6)	–
Policy	Quality of	Conclusivenes	Benefit - Cost	Time frame:	Effect on	
	evidence	s of evidence			inequality	
Direct R&I	Medium	Medium		Medium-Run	 ↑	
Grants			5		I	⊢ f "Demand"
R&D tax	x High	High		Short-Run		
credits			5 5 5		I	
Patent Box	Medium	Medium	Negative	n/a	↑	L
					I	I.

Source: Bloom, Van Reenen and Williams (2019, JEP)

Innovation Policy: The "Lightbulb" Table

(1)	(2)	(3)	(4)	(5)	(6)	_
Policy	Quality of	Conclusivenes	Benefit - Cost	Time frame:	Effect on	
	evidence	s of evidence			inequality	
Direct R&D	Medium	Medium	૾ૻૡ૽ૢૻૢૻૼૼૼઽૻૡ૽ૢૻૺૼૼૼ	Medium-Run	\uparrow	
Grants						
R&D tax	High	High	૾ૻૡૢૻૢૢૢૺૼૼૼ૽૽ૡૢૻૢૻૺૼૼૼ	Short-Run	↑	
credits					I	
Patent Box	Medium	Medium	Negative	n/a	\uparrow	Ĺ
Skilled	High	High		Short to		–
Immigration				Medium-Run	\downarrow	
Universities:	Medium	Low		Medium-Run		
incentives			-		I	
Universities:	Medium	Medium		Long-Run		
STEM Supply			5 5		\checkmark	
Exposure	Medium	Low		Long-run		
Policies			5 5		\checkmark	
Trade and	High	Medium	~ ``@ `:` `@ `:	Medium-Run	↑	
competition					I	

Source: Bloom, Van Reenen and Williams (2019, JEP)

Successful Innovation Policies

R&D tax credits

- Direct government grants
- Human capital supply
 - Expanding STEM workforce
 - Universities
 - Immigration
 - "Lost Einsteins"
- Competition and trade policy

Successful Innovation Policies: 1. R&D tax credits

Background facts

– OECD (2021): 34/42 countries have tax credits (up from 20 in 2000)

Figure 1: Implied tax subsidy rates on R&D expenditure in different countries in 2020

Panel A: SMEs

Panel B: Large enterprises

Source: OECD R&D Tax Incentives Database. https://stats.oecd.org/Index.aspx?DataSetCode=RDSUB Notes: Shown are implied tax subsidy rates for Small and medium size enterprises (SMEs, (Panel A) and Large enterprises (Panel B) in different countries in 2020. The bars of EU countries are blue, those of non-EU countries gray. This is the "profitable scenario". For a detailed methodology behind calculations see https://stats.oecd.org/Index.aspx?DataSetCode=RDSUB#. Countries with no notable bar (i.e. Latvia, Estonia, and Bulgaria) have an implied tax subsidy rate of 0%. Countries are ordered by level of tax subsidy rate (descending order). A corresponding graph showing the values for both firm types in 2007 as a comparison can be found in the Appendix.

Successful Innovation Policies I: R&D tax credits

- Fiscal incentives increase R&D (Stantcheva, 2021)
 - Cross country (e.g. Bloom et al, 2002)
 - Cross state (e.g. Wilson, 2009)
 - Cross firm (e.g. Hall, 1992; Rao, 2016)
 - Elasticity of R&D wrt user cost >1
- Fiscal incentives increase Innovation
 - Important because of re-labelling concern (Chen et al, 2021)
 - See also Akcigit et al (2021) and Stantcheva (2021)
 - Dechezlepretre et al (2022) using Regression Discontinuity Design. Change in SME R&D thresholds

Do tax incentives for research increase firm innovation? An RD Design for R&D

Antoine Dechezleprêtre (OECD) Elias Einiö (VATT) Ralf Martin (Imperial College) Kieu-Trang Nguyen (Northwestern) John Van Reenen (LSE, MIT)

Disclaimer: This work contains statistical data from HMRC which is Crown Copyright. The research datasets used may not exactly reproduce HMRC aggregates. The use of HMRC statistical data in this work does not imply the endorsement of HMRC in relation to the interpretation or analysis of the information.

Discontinuity effects on <u>R&D</u>

Source: Dechezlepretre et al (2022); **Notes:** 5,888 obs. Assets from FAME based on SME threshold (€86m). R&D from CT600. Sample of firms with €25m above & below the threshold. 368 obs per €3m bin.

Discontinuity effects on patenting

Source: Dechezlepretre et al (2022); **Notes:** 5,888 observations. Assets from FAME based on SME assets threshold (€86m) definition. R&D is from CT600. Sample of firms with €25m above & below the threshold. Outcome is average number of patents filed between 2009 and 2013.

R&D tax policy induces <u>spillovers</u>: patenting by technologically close firms (stronger in smaller technology classes)

Source: Dechezlepretre et al (2022); **Notes:** Semi-parametric estimates of spillover coefficient on technologically-connected firm's patents as a function of # peers in technology class (percentiles on X-axis). Uses Gaussian kernel function of the X-axis variable and a bandwidth of 20%. For example, there are 200 firms in 40th percentile technology class.

UK Business R&D/GDP ratio would have continued decline without R&D tax policy

Source: Dechezleprêtre, Einiö, Martin, Nguyen and Van Reenen (2022). **Note:** The data is from OECD MSTI. The dotted line ("UK without tax relief") is the counterfactual R&D intensity in the UK that we estimate in the absence of the R&D Tax Relief Scheme.

Successful Innovation Policies II: R&D Grants

- Direct government grants (in theory, can be targeted better than tax incentives). Examples: Health (Azoulay et al '19); Green Energy (Howell, '17)
 - Well designed public R&D programs crowd-in private innovation on average
 - Moretti, Steinwender & Van Reenen (2022) use <u>defense</u>
 <u>shocks</u> across ~30 year period:
 - Industry-country panel data
 - French firm level panel data
 - Find 10% more public R&D stimulates ~5% more private sector R&D in long-run

Successful Innovation Policies II: R&D Grants

• Type of R&D procurement matters

OPENing up Military Innovation: Causal effects of Reforms to U.S. Defense Research

Sabrina Howell (NYU), Jason Rathje (US Air Force), John Van Reenen (LSE and MIT) and Jun Wong (Chicago)

THE LONDON SCHOOL OF ECONOMICS AND POLITICAL SCIENCE

Successful Innovation Policies II: R&D Grants

- OPEN reforms to US Air Force (USAF) military innovation procurement
- Conventional SBIR program centralized top-down approach: tightly specified calls in SBIR program. Example:
 - "Affordable, Durable, Electrically Conductive Coating or Material Solution for Silver Paint Replacement on Advanced Aircraft"
- OPEN Reform allowed firms more freedom to propose the innovations they thought USAF needed "unknown unknowns"
- Admin data on all applicants, grant scores and outcomes 1983-2021 to implement a sharp RDD

Findings from Howell et al (2022)

- New types of firms starting applying & winning: younger, smaller, based in VC hubs of Silicon Valley, Boston, etc.
- Positive effects of OPEN program on:
 - VC funding
 - Defense Department Technology adoption
 - Innovation (quality-weighted patents)
- Conventional program had no causal effect on these & (unlike Open) only increased chances of winning another SBIR contract (implies lock-in by "SBIR mills")

Big jump in innovation near threshold of winning

Figure 7: Probability of Patents by Rank Around Cutoff

Note: These figures show the probability that an applicant firm had any ultimately granted patent applications within 24 months after the award decision. In both panels, the x-axis shows the applicant's rank around the cutoff for an award. A rank of 1 indicates that the applicant had the lowest score among winners, while a rank of -1 indicates that the applicant had the highest score among losers. We plot the points and 95% confidence intervals from a regression of the outcome on a full complement of dummy variables representing each rank, as well as fixed effects for the topic. The omitted group is rank=-1.We include first applications from 2017-19.

Successful Innovation Policies III

- R&D tax credits
- Direct government grants
- Human capital supply
 - Problem with tax and grants is that they subsidize *demand*. If supply side inelastic, the effect is to just drive up price of R&D (scientist wages) rather than volume of R&D
 - Increasing human capital more effective: directly increases innovation and reduces cost of R&D (reduces inequality)
- Competition and trade policy

Successful Innovation Policies III

- R&D tax credits
- Direct government grants
- Human capital supply
 - Expanding STEM workforce
 - Universities
 - Immigration: Positive effects of immigrants on innovation.
 Can also be quickly increased, but politics hard.
 - "Lost Einsteins & Marie Curies"
- Competition and trade policy

Successful Innovation Policies III

- R&D tax credits
- Direct government grants
- Human capital supply
 - Expanding STEM workforce
 - Universities
 - Immigration
 - "Lost Einsteins & Marie Curies": Few women, minorities & kids from low income families in inventor pool = big loss of talent (Bell, Chetty, Jaravel, Petkova & Van Reenen, 2019, QJE)
- Competition and trade policy

Patent Rates vs. Parent Income Percentile

Note: Sample of children is 1980-84 birth cohorts. Source: Bell et al (2019)

Patent Rates vs. Parent Income Percentile

Note: Sample of children is 1980-84 birth cohorts. Source: Bell et al (2019)

Patent Rates vs. Parent Income Percentile

Note: Sample of children is 1980-84 birth cohorts. Source: Bell et al (2019)

Finding the "Lost Einsteins and Marie Curies"

- Kids born into richest 1% ten times more likely to grow up to be an inventor than those born in bottom 50% (not explained by early ability)
- Unlocking this hidden talent could quadruple innovation rate
- An example of policies that help growth <u>and</u> equity: e.g. education policies (Card & Giuliano '16; Cohodes '20)

Silicon Valley has created a model for identifying and nurturing highbotential young companies. <u>Pioneer, an experimental fund</u>, hopes to do nuch the same thing for high-potential people.

The group, which is being announced on Thursday, plans to use the internet-rest tools of global communication and crowdsourcing to solicit and help select promising candidates in a variety of fields, along with evaluations by experts. Its goal is to put more science and less happenstance into the process of talent discovery — and reach more

OUTLINE OF TALK

Background: The Challenge

Innovation Policy

Diffusion Policy: Management

Misallocation

Growth Plan 2.0

Two fundamental aspects of diffusion

- Technology
- Management practices (focus here today)

Toyota Plant

Adam Smith and the Pin Factory

"No potential driving factor of productivity has seen a higher ratio of speculation to empirical study".

Chad Syverson (*Journal of Economic Literature*)

Enron ex-CEO, Jeff Skilling

WORLD MANAGEMENT SURVEY (WMS); BLOOM & VAN REENEN (2007)

1) Developing management questions

Scorecard for 18 monitoring (e.g. lean), targets & people (e.g. pay, promotions, retention and hiring). ≈45 minute phone interview of manufacturing plant managers

2) Obtaining unbiased comparable responses (<u>"Double-blind"</u>)

- Interviewers do not know the company's performance
- Managers are not informed (in advance) they are scored

3) Getting firms to participate in the interview

- Official Endorsement: Bundesbank, Bank of England, RBI, etc.
- Run by 200 MBA types (loud, assertive & business experience)

<u>World Management Survey (~20,000 interviews,</u> 4 major waves: 2004, 2006, 2009/10, 2013/14; [2022]; 34 countries)

Medium sized manufacturing firms(50-5,000 workers, median≈250) Now extended to Hospitals, Retail & Schools [& more]

Average Management Scores by Country

Source: Bloom, Sadun & Van Reenen (2020). Note: Unweighted average management scores; # interviews in right column (total = 15,489); all waves pooled (2004-2014)

Average Management Scores by Country

Source: Bloom, Sadun & Van Reenen (2020). Note: Unweighted average management scores; # interviews in right column (total = 15,489); all waves pooled (2004-2014)

Management also varies heavily within countries

Firm level average management scores, 1 (worst practice) to 5 (best practice)

Source: Scur, Sadun, Van Reenen, Lemos and Bloom (2021)

Management also varies heavily within countries

Firm level average management scores, 1 (worst practice) to 5 (best practice)

Source: Scur, Sadun, Van Reenen, Lemos and Bloom (2021)

Management scores positively correlated with many other measures of firm performance

Management score decile

Source: Bloom, Brynjolfsson, Foster, Jarmin, Patnaik, Saporta-Eksten & Van Reenen (2019, AER). MOPS

Globally Management accounts for a third of TFP Gap with US (~30% reallocation)

Source: Bloom, Sadun & Van Reenen "Management as a Technology"

Notes: TFP gaps from Penn World Tables; fraction accounted for by management uses the weighted average management scores and an assumed 10% impact of management on TFP

			H = Highly possible		
Policy type	Strength of evidence	Policy Net benefit (out of 5)	Difficulty of implementation	Time frame	
Structural					
Competition	Н	\circ	Μ	medium	
Trade and FDI	Н	∞∞∞∞€	\mathbf{L}	medium	
Education	Μ	\$\$ \$ \$	М	long	
Deregulation	Μ	\$\$\$\$	\mathbf{L}	medium	
Governance	М		M/L	long	
Direct					
Training - consulting	Н		Н	short	
Training - formal classroom	М	$\langle \mathfrak{P} \langle \mathfrak{P} \rangle$	Н	medium	
Information/benchmarking	L/M	\$\$\$\$\$	Н	medium	

Toolkit of Management policies

L = Low; Not politically easy

M = medium

Source: Scur, Sadun, Van Reenen, Lemos & Bloom (2021)

OUTLINE OF TALK

Background: The Challenge

Innovation Policy

Diffusion Policy: Management

Misallocation

Growth Plan 2.0

Misallocation

- Enormous variation of productivity (& management) across firms
- About half of productivity growth is reallocation from less efficient to more efficient firms
- Productivity dispersion between firms has grown larger over time
 - e.g. Andrews, Criscuolo & Gal, 2015; Van Reenen, 2018; de Loecker, Obermeier & Van Reenen, 2022

OUTLINE OF TALK

Background: The Challenge

Innovation Policy

Diffusion Policy: Management

Misallocation

Growth Plan 2.0

Growth Plan 2.0

- Short Run Post-COVID policies balance reallocation & protection
- Long run policies
 - Structural (competition, trade, skills, infrastructure, tax & subsidies)
 - Direct (e.g. management information and training)
- Use evidence:
 - Toolkits for innovation & management policy
- Bind together in a mission: Climate Change

HAMILTON

Some Further Reading (and viewing)

"Innovation Policies to Boost Productivity" (2020) Hamilton Policy Proposal 2020-13 https://www.hamiltonproject.org/assets/files/JVR_PP_LO_6.15_FINAL.pdf webinar

"A Toolkit of Policies to promote Innovation" (Nick Bloom, Heidi Williams and John Van Reenen), <u>Journal of Economic Perspectives</u> (2019) 33(3) 163–184 <u>http://cep.lse.ac.uk/pubs/download/dp1634.pdf</u>

- "Why Do We Undervalue Competent Management" (Raffaella Sadun, Nick Bloom and John Van Reenen) <u>Harvard Business Review</u> (2017), September-October
- "Measuring and Explaining Management practices across firms and nations" (Nick Bloom and John Van Reenen) Quarterly Journal of <u>Economics</u> (2007) 122(4), 1351–1408.

"Who Becomes an Inventor in America? The Importance of Exposure to Innovation" (Alex Bell, Raj Chetty, Xavier Jaravel, Neviana Petkova and John Van Reenen), <u>http://cep.lse.ac.uk/pubs/download/dp1519.pdf</u> Data <u>Quarterly Journal of Economics</u> (2019)134(2) 647–713, <u>New York Times Vox Atlantic Fortune Conversation VoxUS Economist VC Centrepiece INET</u>

"OPENing up Military Innovation: An Evaluation of Reforms to the U.S. Air Force SBIR Program" (Sabrina T. Howell, Jason Rathje, John Van Reenen and Jun Wong), Vox 2021 https://poid.lse.ac.uk/textonly/publications/downloads/poidwp004.pdf

"The Intellectual Spoils of War: Defense R&D, Productivity and Spillovers" (Enrico Moretti, Claudia Steinwender and John Van Reenen) <u>http://cep.lse.ac.uk/pubs/download/dp1662.pdf</u> <u>Vox</u>

Further reading

- "The World Management Survey at 18" (Scur, Sadun, Van Reenen, Lemos & Bloom, 2021), Oxford Review of Economic Policy
 <u>https://poid.lse.ac.uk/textonly/publications/downloads/poidwp002.pdf</u>
- World Management Survey http://worldmanagementsurvey.org/
- "Increasing Difference Between Firms" Changing Market Structures and Implications for Monetary Policy, Jackson Hole Symposium (Van Reenen, 2018) 19-65 <u>http://cep.lse.ac.uk/pubs/download/dp1576.pdf</u> NYT NPR
- LSE Growth Commission Final Report (Aghion et al, 2013)
 <u>http://www.lse.ac.uk/researchAndExpertise/units/growthCommission/documents/pdf/GCReportSummary.pdf</u>
- "Management as a Technology" (Bloom, Sadun and Van Reenen, 2017): <u>http://cep.lse.ac.uk/pubs/download/dp1433.pdf</u>
- "Do Fiscal Incentives increase innovation? An RD Design for R&D" (Antoine Dechezlepretre, Elias Einio, Ralf Martin, Kieu-Trang Nguyen and John Van Reenen), CEP Discussion Paper 1413 <u>Vox</u>, <u>http://cep.lse.ac.uk/pubs/download/dp1413.pdf</u>

Table 8: Spillovers

Sample	All (OLS)	All (OLS)	Large tech class (OLS)	Small Tech class (OLS)	Small Tech class (IV)
Dependent variable (patents) mean over 2006-08	0.396	0.396	0.397	0.291	0.291
Baseline firm's below-asset- threshold indicator (in 2007)	0.019 (0.012)	0.067*** (0.019)	0.018 (0.011)	0.196** (0.093)	
Baseline firm's below-threshold indicator*tech. class size ('000)		-0.029** (0.007)			J
Baseline firm's R&D 2009-11 average (millions)					0.222*** (0.111)
Observations	203,832	203,832	201,739	2,093	2,093

Note: Sample of tech-connected pairs of a baseline firm & connected firm. Baseline firms (547) include patenting firms with total assets in 2007 between $\notin 61m$ and $\notin 111m$. Connected firms (17,632) = universe of firms patenting before 2008. Running variable: baseline firm's 2007 assets in with a threshold of $\notin 86m$. Controls for polynomials of running variable and connected firm's 2007 assets. SEs in brackets clustered by baseline and connected firms' shared tech class. Tech class size is # firms in tech area. Small is under 200 firms in class.

Productivity strongly positively correlated with Management Scores

Notes: Management is an average of all 18 questions (set to sd=1). TFP residuals of sales on capital, labor, skills controls plus a full set of SIC-3 industry, country and year dummies controls. N=10,900. **Source:** Bloom, Sadun and Van Reenen (2017)