
Estimating production functions with
expectations data

Agnes Norris Keiller1 Aureo de Paula2 John Van Reenen1,3

1Programme on Innovation and Diffusion, LSE

2UCL

3MIT

May 16 2023



Motivation

• Production functions integral to many strands of research

yit = f (kit , lit ; θ) + eit

• Extensive literature has presented various estimation methods

◦ First order conditions: Solow 1957; Hall 1988
◦ Dynamic panel IV: Chamberlain 1982; Blundell and Bond 2000
◦ Control functions: Olley and Pakes 1996; Levinsohn and Petrin

2003; Ackerberg, Caves, and Frazer 2015

• Surveys increasingly elicit firms’ expectations about future
inputs and outputs

• Can we improve on existing production function
estimators using data on firms’ expectations?
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Preview

Can we improve on existing production function estimators
using data on firms’ expectations?

• Theory

◦ Expectations data allow one to relax assumptions of optimal
firm choices required by control function estimators

• MC simulations

◦ Our proposed estimator is robust to optimisation error in
inputs, while other methods are not

• UK data over 2017-2020

◦ Expectations estimator implies more dispersed productivity
distribution than alternatives
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The object of interest

• Consider a general production function of the following form

yit = f (kit , lit ; θ) + ωit + ϵit + υit (1)

• ωit = idiosyncratic productivity known by the firm when
deciding period t input and investment
• ϵit and υit = unanticipated mean-zero disturbances

◦ ϵit = productivity shocks unknown by the firm when making
period t decisions

◦ υit = measurement error
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Dynamics

• Capital evolves according to

Kit = (1− δ)Kit−1 + iit−1 (2)

◦ δ = the depreciation rate, iit−1 = investment

• ωit follows a Markov process

ωit = E[ωit |ωit−1] + ξit = g(ωit−1) + ξit (3)

◦ E[ξit |Iit−1] = 0
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Expectations

• Firms form expectations about t + 1 production and inputs at
the end of t conditional on Iit = {kit , lit , iit , ωit , ϵit , kit+1}

• If firms’ expectations align with the true production
technology

Eit [yit+1|Iit ] =
∫

f (kit+1, lit+1; θ)dFit(lit+1)

+ Eit [ωit+1|Iit ] + Eit [ϵit+1|Iit ] + Eit [υit+1|Iit ] (4)

◦ Fit(lit+1) = firm i ’s subjective probability distribution over
their next-period labour input
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Recovering ωit

• Rearranging equation 4 for g(ωit) obtains

g(ωit) = Eit [yit+1|Iit ]−
∫

f (kit+1, lit+1; θ)dFit(lit+1) (5)

• Assuming the RHS of equation 5 is strictly increasing in ωit

ωit = g−1

(
Eit [yit+1|Iit ]−

∫
f (kit+1, lit+1; θ)dFit(lit+1)

)
(6)
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• Ψ = a non-parametric representation of g−1

• Combining

ωit = g−1

(
Eit [yit+1|Iit ]−

∫
f (kit+1, lit+1; θ)dFit(lit+1)

)
(6)

with
yit = f (kit , lit ; θ) + ωit + ϵit + υit (1)

• → a moment condition we can use to recover θ

E[ϵit + υit ]

= E[yit − f (kit , lit ; θ)− ωit ]
= E

[
yit − f (kit , lit ; θ)−Ψ

(
Eit [yit+1|Iit ]−

∫
f (kit+1, lit+1; θ)dFit(lit+1)

)]
=0

(6)
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Estimation

Cobb-Douglas production implies

yit = β0 − βkkit − βl lit + ωit + ϵit + υit

= β0 − βkkit − βl lit +Ψ(Eit [yit+1|Iit ]− β0 − βkkit+1 − βlEit [lit+1|Iit ]) + ϵit + υit

• Assuming Ψ is a smooth function, this is an example of a
generalized additive model

◦ See Hastie and Tibshirani (1986) and Robinson (1988)

• Problem 1: we require Ψ to be monotonic

◦ Impose constraints on the 1st and 2nd derivatives of the
smooth functions that comprise Ψ (Pya and Wood 2015)

• Problem 2: Ψ’s argument is a function of the linear
parameters

◦ Use an iterative ‘backfitting’ algorithm (Friedman and Stuetzle
1981)
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Estimation

Adapting the Friedman and Stuetzle (1981) algorithm to our setting

1. Initialise the parameter vector at θ̂0 = (β̂00, β̂k0, β̂l0)

◦ “A good starting value might set... [θ̂0] equal to the values
predicted by a linear in x least squares regression of Y on a
constant and all the regressors.” (Ichimura and Todd 2007)
In maths

2. For iteration j , calculate
Zij = Eit [yit+1|Iit ]− β0j−1 − βkj−1kit+1 − βlj−1Eit [lit+1|Iit ]

3. Fit the model yit = β0 − βkkit − βl lit +Ψ(Zij) + ϵit + υit using the

shape constrained estimator of Pya and Wood (2015) to obtain θ̂j

4. Calculate the Euclidean distance between θ̂j and θ̂j−1. If the

distance is below some tolerance level, stop and treat θ̂j as the
model’s parameter estimates. If not then set j ← j + 1 and repeat
from step 2

For the remainder of these slides, this algorithm is referred to as ‘NPR’
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Why bother?

• NPR requires

1. Firms expectations align with the true production technology

2. ω follows a first-order Markov process

3. The LOM for ω is monotonic

• 1-2 are also required by OP\LP\ACF
• The equivalent of point 3 for OP\LP\ACF is that firm

decisions (conditional on observables) are monotonic in ω

◦ OP: firms’ investment policy → ω = ΦOP (iit , kit)
◦ LP: firms’ material input policy → ω = ΦLP (kit)
◦ ACF: firms’ material input policy → ω = ΦACF (lit , kit)
◦ Typically justified by a model of optimal firm decisions

• NPR assumes nothing about the optimality of firms’ decisions
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Monte Carlo setup

• Following ACF

◦ y a Leontief composite of m and a ‘value added’ function of l
and k

◦ ω follows an AR(1) process
◦ Investment subject to a firm-specific convex adjustment cost
◦ Allow for l to be chosen at an intermediate period without full

knowledge of ω
◦ Allow for firm-specific wage shocks

In maths

• Firms’ optimal decisions have an analytical solution

• Simulate 1000 firms over 100 periods, use data from last 10

• Compare OLS\LP\ACF\NPR across various DGPs
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Measurement error in materials

Optimisation error in labour

M Meas. βl βk βl βk
Error OLS LP

0.0

0.381 (0.007) 0.919 (0.002) 0.600 (0.003) 0.399 (0.014)

0.1

0.381 (0.007) 0.919 (0.002) 0.611 (0.003) 0.391 (0.013)

0.25

0.381 (0.007) 0.919 (0.002) 0.655 (0.003) 0.355 (0.012)

0.5

0.381 (0.007) 0.919 (0.002) 0.746 (0.004) 0.276 (0.010)

ACF NPR

0.0

0.600 (0.009) 0.400 (0.016) 0.649 (0.099) 0.336 (0.524)

0.1

0.601 (0.009) 0.401 (0.016) 0.649 (0.099) 0.336 (0.524)

0.25

0.605 (0.010) 0.407 (0.016) 0.649 (0.099) 0.336 (0.524)

0.5

0.617 (0.012) 0.411 (0.017) 0.649 (0.099) 0.336 (0.524)

Note: 500 replications. True values of βl and βk are 0.6 and 0.4 respectively.

Parentheses contain standard deviations which are calculated for the parameter

estimates over the 500 replications.
Serially correlated wages and intermediate l Serially correlated wages and optimisation error in l
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Note: 500 replications. True values of βl and βk are 0.6 and 0.4 respectively.

Parentheses contain standard deviations which are calculated for the parameter

estimates over the 500 replications.
Serially correlated wages and intermediate l Serially correlated wages and optimisation error in l
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Measurement error in materials

Optimisation error in labour

M Meas. βl βk βl βk
Error OLS LP

0.0 0.381 (0.007) 0.919 (0.002) 0.600 (0.003) 0.399 (0.014)
0.1 0.381 (0.007) 0.919 (0.002) 0.611 (0.003) 0.391 (0.013)
0.25 0.381 (0.007) 0.919 (0.002) 0.655 (0.003) 0.355 (0.012)
0.5 0.381 (0.007) 0.919 (0.002) 0.746 (0.004) 0.276 (0.010)

ACF NPR

0.0 0.600 (0.009) 0.400 (0.016) 0.600 (0.003) 0.400 (0.005)
0.1 0.601 (0.009) 0.401 (0.016) 0.600 (0.003) 0.400 (0.005)
0.25 0.605 (0.010) 0.407 (0.016) 0.600 (0.003) 0.400 (0.005)
0.5 0.617 (0.012) 0.411 (0.017) 0.600 (0.003) 0.400 (0.005)

Note: 500 replications. True values of βl and βk are 0.6 and 0.4 respectively.

Parentheses contain standard deviations which are calculated for the parameter

estimates over the 500 replications. NPR results from initialisation at βl0 = 0.45 and

βk0 = 0.55.
Serially correlated wages and intermediate l Serially correlated wages and optimisation error in l
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Optimisation error

Optimisation error in labour and other inputs

Optim. βl βk βl βk
Error OLS LP

m

0.380 (0.006) 0.919 (0.002) 0.815 (0.004) 0.462 (0.028)

i

-0.044 (0.016) 0.806 (0.006) 0.000 (0.004) 0.403 (0.016)

(i ,m)

-0.044 (0.016) 0.806 (0.006) 0.636 (0.009) 0.396 (0.006)

ACF NPR

m

0.688 (0.014) 0.350 (0.017) 0.650 (0.100) 0.339 (0.527)

i

0.367 (0.785) 0.404 (0.012) 0.616 (0.063) 0.400 (0.002)

(i ,m)

-286.016 (3815.097) -19.295 (508.348) 0.616 (0.061) 0.400 (0.002)

Note: 500 replications. True values of βl and βk are 0.6 and 0.4 respectively.

Parentheses contain standard deviations which are calculated for the parameter

estimates over the 500 replications. All DGPs feature optimisation error in labour.

Alternative initialisation
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Optimisation error

Optimisation error in labour and other inputs

Optim. βl βk βl βk
Error OLS LP

m 0.380 (0.006) 0.919 (0.002) 0.815 (0.004) 0.462 (0.028)
i -0.044 (0.016) 0.806 (0.006) 0.000 (0.004) 0.403 (0.016)
(i ,m) -0.044 (0.016) 0.806 (0.006) 0.636 (0.009) 0.396 (0.006)

ACF NPR

m 0.688 (0.014) 0.350 (0.017) 0.650 (0.100) 0.339 (0.527)
i 0.367 (0.785) 0.404 (0.012) 0.616 (0.063) 0.400 (0.002)
(i ,m) -286.016 (3815.097) -19.295 (508.348) 0.616 (0.061) 0.400 (0.002)

Note: 500 replications. True values of βl and βk are 0.6 and 0.4 respectively.

Parentheses contain standard deviations which are calculated for the parameter

estimates over the 500 replications. All DGPs feature optimisation error in labour.

Alternative initialisation
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Optimisation error

Optimisation error in labour and other inputs
Optim. βl βk N runs βl βk N runs
Error OLS LP

m 0.380 (0.006) 0.919 (0.002) 500 0.815 (0.004) 0.462 (0.028) 500
i 0.144 (0.186) 0.860 (0.053) 2 0.003 (0.002) 0.402 (0.002) 260
(i ,m) 0.144 (0.186) 0.860 (0.053) 2 0.636 (0.009) 0.396 (0.006) 500

Error ACF NPR

m 0.688 (0.014) 0.350 (0.017) 500 0.633 (0.096) 0.407 (0.076) 393
i 0.580 (0.087) 0.400 (0.002) 455 0.616 (0.063) 0.400 (0.002) 500
(i ,m) 0.351 (0.054) 0.563 (0.224) 2 0.616 (0.061) 0.400 (0.002) 500

Note: table restricted to replications with both βl and βk in the range 0 to 1. True

values of βl and βk are 0.6 and 0.4 respectively. Parentheses contain standard

deviations which are calculated for the parameter estimates over the number of

replications stated in the table. All DGPs feature optimisation error in labour.



Methodology Performance Next steps Extra results

Monte Carlo summary

1. NPR robust to measurement error in materials

◦ Outperforms OLS\LP\ACF as measurement error σ ↑
2. NPR robust to optimisation errors

◦ Outperforms OLS\LP\ACF as optimisation error σ ↑
3. NPR algorithm sensitive to initialisation

◦ Far more imprecise than OLS\LP\ACF using the Ichimura and
Todd (2007) initialisation

◦ Outperforms OLS\LP\ACF across all DGPs when initialisation
adequately close to true values
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Data

1. Management and Expectations Survey∗ (MES)

◦ Voluntary survey of a representative sample of firms in 2017
and 2020

◦ Output, labour, materials and one-period-ahead expectations

2. ABI/ABS∗∗

◦ Detailed questions on capital expenditure
◦ Match with MES to obtain investment and impute capital

∗ Office for National Statistics (2022)
∗∗ University of West of England et al. (2022); Office for National Statistics

(2023).
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Expectations in the MES

• The MES elicits expectations by asking

◦ Looking ahead to the 2018 calendar year, what is the
approximate pound sterling value of turnover you would
anticipate for this business in the following scenarios [Lowest,
Low, Medium, High, Highest], and what likelihood do you
assign to each scenario?

• MES 2017: turnover, employment, capital expenditure and
expenditure on energy, goods and services

• MES 2020: turnover, employment
• To get what we need

◦ Convert scenario responses into 5 points on a CDF
◦ Estimate the parameters of a lognormal distribution to fit

these points via minimisation

GDP Turnover Employment
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Expectations in the MES

• The MES elicits expectations by asking

◦ Looking ahead to the 2018 calendar year, what is the
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these points via minimisation
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Sample selection

2017 2020

Share Share
N N TO N N TO

All 8970 1 1 10014 1 1
(1) {yit , lit} obs. 8541 0.95 0.99 9899 0.99 1.00
(2) E[yit+1, lit+1] obs. 6301 0.70 0.71 7007 0.70 0.71
(3) kit obs. 7802 0.87 0.95 6373 0.64 0.91
(4) kit+1 obs. 5939 0.66 0.89 4258 0.43 0.84

Estimation sample (1-4) 4388 0.49 0.66 3127 0.31 0.58

Note: table shows the number and share of firms that comply with various sample

selection criteria and the share of turnover these firms account for. Characteristics
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Production function estimates

Full sample

OLS OP LP ACF NPR

βl 0.72 0.69 0.47 0.71 0.74
(0.01) (0.01) (0.01) (0.00) (0.05)

βk 0.28 0.26 0.28 0.28 0.22
(0.01) (0.08) (0.03) (0.00) (0.04)

N Obs. 13763 13533 13763 13763 6941
N firms 6249 6249 6249 6249 6249

Note: dependent variable is log turnover. Parentheses contain standard errors. NPR

standard errors calculated from 100 bootstrap replications.

Translog Manufacturing Non-manufacturing
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Production function estimates

2017 sample

OLS OP LP ACF NPR

βl 0.69 0.65 0.36 0.69 0.43
(0.02) (0.02) (0.01) (0.00) (0.11)

βk 0.30 0.29 0.30 0.29 0.10
(0.02) (0.12) (0.02) (0.00) (0.07)

N Obs. 8039 7897 8039 8039 4075
N firms 4075 4075 4075 4075 4075

Note: dependent variable is log turnover. Parentheses contain standard errors. NPR

standard errors calculated from 100 bootstrap replications.

Including intermediates Value added



Methodology Performance Next steps Extra results

Production function estimates

2020 sample

OLS OP LP ACF NPR

βl 0.76 0.74 0.55 0.77 0.80
(0.02) (0.02) (0.02) (0.00) (0.07)

βk 0.26 -0.04 0.25 0.27 0.22
(0.02) (0.11) (0.04) (0.04) (0.05)

N Obs. 5724 5636 5724 5724 2866
N firms 2866 2866 2866 2866 2866

Note: dependent variable is log turnover. Parentheses contain standard errors. NPR

standard errors calculated from 100 bootstrap replications.
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Productivity dispersion

Productivity dispersion implied by full sample estimates

OLS OP LP ACF NPR

All

75/25 ratio 2.51 2.56 2.99 2.50 3.96
90/10 ratio 7.13 7.36 9.05 7.08 13.22
90/50 ratio 2.84 2.84 2.98 2.85 4.07
50/10 ratio 2.51 2.59 3.04 2.48 3.25

N 13840

By sector By year
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Where we are, where we’re going

• Theoretical framework showing how to use expectations data
to recover production function parameters
• MC simulations showing relative strength of NPR estimator

◦ Develop initialisation protocol to improve NPR precision
◦ Experiment with other DGPs e.g. non-linear ω dynamics

• Empirical application on UK data

◦ Understand implausibly low RTS observed in 2017
◦ Examine industry heterogeneity at finer resolution
◦ Analyse implied productivity

• Any suggestions welcome!
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Ichimura and Todd (2007) initialisation

• yit = β1 + β2lit + β3kit + β4E[yit+1] + β5E[lit+1] + β6kt+1

• θ̂0 = (β̂1, β̂2, β̂3)

Back
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Monte Carlo setup

• Following ACF

◦ Y = min{β0K
βk

it Lβl

it e
ωit , βmMit}eϵit

◦ ωit = ρωit−1 + ξit
◦ ci (Iit) =

ϕi

2 I
2
it

◦ ωit−b = ρ1−bωit−1 + ξAit , ωit = ρbωit−b + ξBit
◦ lnWit = 0.3 lnWit−1 + ξWit

Back

• Firms’ optimal decisions have an analytical solution

• Set Ki0 = 0, simulate the model for 100 periods, use data
from the last 10

• Compare OLS, LP, ACF, NPR performance across various
DGPs
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Measurement error in materials

Serially correlated wages and labour set at t − b

M Meas. βl βk βl βk
Error OLS LP

0.0 0.402 (0.013) 0.966 (0.004) -0.000 (0.003) 1.432 (0.028)
0.1 0.402 (0.013) 0.966 (0.004) 0.056 (0.004) 1.353 (0.027)
0.25 0.402 (0.013) 0.966 (0.004) 0.270 (0.007) 1.054 (0.023)
0.5 0.402 (0.013) 0.966 (0.004) 0.587 (0.009) 0.601 (0.018)

ACF NPR

0.0 0.599 (0.009) 0.401 (0.021) 0.611 (0.048) 0.394 (0.363)
0.1 0.602 (0.009) 0.410 (0.020) 0.611 (0.048) 0.394 (0.363)
0.25 0.616 (0.009) 0.432 (0.018) 0.611 (0.048) 0.394 (0.363)
0.5 0.652 (0.008) 0.428 (0.015) 0.611 (0.048) 0.394 (0.363)

Note: 500 replications. True values of βl and βk are 0.6 and 0.4 respectively.

Parentheses contain standard deviations which are calculated for the parameter

estimates over the 500 replications.

Back
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Measurement error in materials

Serially correlated wages and labour set at t − b

M Meas. βl βk βl βk
Error OLS LP

0.0 0.402 (0.013) 0.966 (0.004) -0.000 (0.003) 1.432 (0.028)
0.1 0.402 (0.013) 0.966 (0.004) 0.056 (0.004) 1.353 (0.027)
0.25 0.402 (0.013) 0.966 (0.004) 0.270 (0.007) 1.054 (0.023)
0.5 0.402 (0.013) 0.966 (0.004) 0.587 (0.009) 0.601 (0.018)

ACF NPR

0.0 0.599 (0.009) 0.401 (0.021) 0.600 (0.002) 0.403 (0.006)
0.1 0.602 (0.009) 0.410 (0.020) 0.600 (0.002) 0.403 (0.006)
0.25 0.616 (0.009) 0.432 (0.018) 0.600 (0.002) 0.403 (0.006)
0.5 0.652 (0.008) 0.428 (0.015) 0.600 (0.002) 0.403 (0.006)

Note: 500 replications. True values of βl and βk are 0.6 and 0.4 respectively.

Parentheses contain standard deviations which are calculated for the parameter

estimates over the 500 replications. NPR results from initialisation at βl0 = 0.55 and

βk0 = 0.45.

Back
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Measurement error in materials

Optimisation error in labour and serially correlated wages

M Meas. βl βk βl βk
Error OLS LP

0.0 0.294 (0.015) 0.909 (0.004) 0.357 (0.004) 0.881 (0.020)
0.1 0.294 (0.015) 0.909 (0.004) 0.373 (0.004) 0.863 (0.020)
0.25 0.294 (0.015) 0.909 (0.004) 0.444 (0.005) 0.780 (0.018)
0.5 0.294 (0.015) 0.909 (0.004) 0.593 (0.006) 0.593 (0.016)

ACF NPR

0.0 0.608 (0.005) 0.374 (0.021) 0.605 (0.028) 0.410 (0.334)
0.1 0.610 (0.005) 0.383 (0.021) 0.605 (0.028) 0.410 (0.334)
0.25 0.616 (0.006) 0.416 (0.018) 0.605 (0.028) 0.410 (0.334)
0.5 0.634 (0.006) 0.447 (0.015) 0.605 (0.028) 0.410 (0.334)

Note: 500 replications. True values of βl and βk are 0.6 and 0.4 respectively.

Parentheses contain standard deviations which are calculated for the parameter

estimates over the 500 replications.

Back
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Measurement error in materials

Optimisation error in labour and serially correlated wages

M Meas. βl βk βl βk
Error OLS LP

0.0 0.294 (0.015) 0.909 (0.004) 0.357 (0.004) 0.881 (0.020)
0.1 0.294 (0.015) 0.909 (0.004) 0.373 (0.004) 0.863 (0.020)
0.25 0.294 (0.015) 0.909 (0.004) 0.444 (0.005) 0.780 (0.018)
0.5 0.294 (0.015) 0.909 (0.004) 0.593 (0.006) 0.593 (0.016)

ACF NPR

0.0 0.608 (0.005) 0.374 (0.021) 0.600 (0.002) 0.402 (0.006)
0.1 0.610 (0.005) 0.383 (0.021) 0.600 (0.002) 0.402 (0.006)
0.25 0.616 (0.006) 0.416 (0.018) 0.600 (0.002) 0.402 (0.006)
0.5 0.634 (0.006) 0.447 (0.015) 0.600 (0.002) 0.402 (0.006)

Note: 500 replications. True values of βl and βk are 0.6 and 0.4 respectively.

Parentheses contain standard deviations which are calculated for the parameter

estimates over the 500 replications. NPR results from initialisation at βl0 = 0.55 and

βk0 = 0.45.

Back
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Optimisation error

Optimisation error in labour and other inputs

Optim. βl βk βl βk
Error OLS LP

i -0.044 (0.016) 0.806 (0.006) 0.000 (0.004) 0.403 (0.016)
m 0.380 (0.006) 0.919 (0.002) 0.815 (0.004) 0.462 (0.028)
(i ,m) -0.044 (0.016) 0.806 (0.006) 0.636 (0.009) 0.396 (0.006)

ACF NPR

i 0.367 (0.785) 0.404 (0.012) 0.601 (0.017) 0.400 (0.001)
m 0.688 (0.014) 0.350 (0.017) 0.600 (0.003) 0.400 (0.005)
(i ,m) -286.016 (3815.097) -19.295 (508.348) 0.601 (0.017) 0.400 (0.001)

Note: 500 replications. True values of βl and βk are 0.6 and 0.4 respectively.

Parentheses contain standard deviations which are calculated for the parameter

estimates over the 500 replications. NPR results from initialisation at βl0 = 0.55 and

βk0 = 0.45.

Back
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Aggregate expectations far more dispersed in 2020

Expected GDP growth

Note: dashed lines denote means of 0.1% in 2017 and -0.7% in 2020. Sample sizes are

4268 in 2017 and 3127 in 2020. Back
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Turnover expectations far more pessimistic in 2020

Expected turnover growth

Note: distribution is trimmed at the top and bottom 5%. Dashed lines denote means

calculated across the entire distribution of 1.5% in 2017 and -7.1% in 2020. Sample

sizes are 4388 in 2017 and 3127 in 2020. Back
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Employment expectations slightly more pessimistic in 2020

Expected employment growth

Note: distribution is trimmed at the top and bottom 5%. Dashed lines denote means

calculated across the entire distribution of 4.0% in 2017 and 1.7% in 2020. Sample

sizes are 4388 in 2017 and 3127 in 2020. Back
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Sample characteristics

2017 MES: est. samp. MES: all
Age 25.22 23.45
Turnover (£th) 63.03 52.28
Employment 325 318
Capital (£th) 20.08 19.75
N firms 4388 7532

2020 MES: est. samp. MES: all
Age 27.98 26.80
Turnover (£th) 44.86 34.17
Employment 297 206
Capital (£th) 25.19 16.13
N firms 3127 6373

Note: table shows mean values calculated over the firms indicated by ‘N firms’.

Back
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Production function estimates

Full sample

OLS ACF NPR

βl 0.74 1.07 0.74
βk 0.27 -0.13 0.20
N Obs. 14786 14786 7515
N firms 6786 6786 6786

Note: dependent variable is log turnover. Parentheses contain standard errors. NPR

standard errors calculated from 100 bootstrap replications. Back
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Production function estimates

Manufacturing sample

OLS OP LP ACF NPR

βl 0.86 0.80 0.56 0.85 0.92
(0.03) (0.02) (0.05) (0.00) (0.08)

βk 0.28 0.28 0.26 0.28 0.22
(0.02) (0.05) (0.00) (0.00) (0.07)

N Obs. 3452 3396 3452 3452 1734
N firms 1553 1553 1553 1553 1553

Note: dependent variable is log turnover. Parentheses contain standard errors. NPR

standard errors calculated from 100 bootstrap replications. Back Translog
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Production function estimates

Manufacturing sample

OLS ACF NPR

βl 0.88 1.40 0.96
βk 0.24 -0.33 0.19
N Obs. 3633 3633 1836
N firms 1646 1646 1646

Note: dependent variable is log turnover. Parentheses contain standard errors. NPR

standard errors calculated from 100 bootstrap replications. Back
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Production function estimates

Non-manufacturing sample

OLS OP LP ACF NPR

βl 0.69 0.67 0.45 0.68 0.68
(0.02) (0.01) (0.01) (0.00) (0.06)

βk 0.27 0.27 0.27 0.26 0.21
(0.02) (0.02) (0.02) (0.00) (0.04)

N Obs. 10311 10137 10311 10311 5207
N firms 4696 4696 4696 4696 4696

Note: dependent variable is log turnover. Parentheses contain standard errors. NPR

standard errors calculated from 100 bootstrap replications. Back Translog
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Production function estimates

Non-manufacturing sample

OLS ACF NPR

βl 0.71 0.96 0.72
βk 0.27 -0.11 0.18
N Obs. 11153 11153 5679
N firms 5140 5140 5140

Note: dependent variable is log turnover. Parentheses contain standard errors. NPR

standard errors calculated from 100 bootstrap replications. Back
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Production function estimates

2017 sample

OLS OP LP ACF NPR

βl 0.39 0.39 0.37 0.38 0.32
(0.02) (0.01) (0.02) (0.38) (0.09)

βm 0.46 0.45 0.43 0.44 0.38
(0.02) (0.01) (0.02) (0.00) (0.07)

βk 0.14 0.01 0.14 0.13 0.06
(0.01) (0.07) (0.02) (0.00) (0.06)

N Obs. 8347 7838 8347 8347 4235
N firms 4235 4235 4235 4235 4235

Note: dependent variable is log turnover. Parentheses contain standard errors. NPR

standard errors calculated from 100 bootstrap replications.

Back
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Production function estimates

2017 sample

OLS OP LP ACF NPR

βl 0.63 0.59 0.67 0.63 0.34
(0.03) (0.02) (0.02) (0.00) (0.10)

βk 0.33 0.32 0.69 0.33 0.46
(0.02) (0.04) (0.13) (0.00) (0.09)

N Obs. 7679 7214 7679 7679 3976
N firms 3976 3976 3976 3976 3976

Note: dependent variable is log value added. Parentheses contain standard errors.

NPR standard errors calculated from 100 bootstrap replications.

Back
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Productivity dispersion

Productivity dispersion implied by sector-specific estimates

OLS OP LP ACF NPR

Manufacturing

75/25 ratio 2.18 2.21 2.48 2.17 2.48
90/10 ratio 4.48 4.61 5.95 4.48 5.61
90/50 ratio 2.29 2.32 2.45 2.29 2.52
50/10 ratio 1.96 1.99 2.43 1.95 2.23

N 3466

Non-manufacturing

75/25 ratio 2.64 2.68 3.13 2.64 4.25
90/10 ratio 8.35 8.37 10.41 8.29 14.95
90/50 ratio 3.07 3.02 3.14 3.06 4.41
50/10 ratio 2.72 2.77 3.32 2.71 3.39

N 10374

Back



Methodology Performance Next steps Extra results

Productivity dispersion

Productivity dispersion implied by year-specific estimates

OLS OP LP ACF NPR

2017

75/25 ratio 2.46 2.47 3.15 2.46 4.34
90/10 ratio 6.98 7.10 9.96 6.98 22.47
90/50 ratio 2.89 2.86 3.15 2.88 6.12
50/10 ratio 2.42 2.48 3.16 2.43 3.67

N 8062

2020

75/25 ratio 2.59 5.86 2.94 2.59 3.47
90/10 ratio 7.34 30.80 8.71 7.33 11.04
90/50 ratio 2.79 6.66 2.83 2.80 4.18
50/10 ratio 2.63 4.63 3.08 2.62 2.64

N 5778

Back
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Data citations

Office for National Statistics (2022). Management and
Expectations Survey, 2016-2020: Secure Access. [data collection].
3rd Edition. UK Data Service. SN: 8557. University of West of

England, Bristol, Office for National Statistics, Virtual Microdata
Laboratory (VML). (2022). Annual Respondents Database X,
1998-2014: Secure Access. [data collection]. 4th Edition. Office
for National Statistics, [original data producer(s)]. Office for
National Statistics. SN: 7989. Office for National Statistics

(2023). Annual Business Survey, 2005-2020: Secure Access. [data
collection]. 16th Edition. UK Data Service. SN: 7451.
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